skip to main content


Search for: All records

Creators/Authors contains: "Santos, C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This commentary paper addresses the outdated and misleading terminology used to categorize termites into “higher” and “lower”. These terms perpetuate a linear progression view of evolution, which is both inaccurate and detrimental to our understanding of the diversity of life. We trace the historical origins of these terms and highlight their flawed interpretation of evolutionary relationships. We advocate for the adoption of Termitidae (or termitid), rather than “higher termites”. As for the paraphyletic group of “lower termites”, we recommend refraining from grouping them together, unless specifically referring to their symbionts. In such cases, we propose “protist-dependent termites” or “non-Termitidae termites”. 
    more » « less
    Free, publicly-accessible full text available September 1, 2024
  2. Abstract

    Absolute paleointensity (API) of the geomagnetic field can be estimated from volcanic rocks by comparing the natural remanent magnetization (NRM) to a laboratory‐induced thermoremanent magnetization (Lab‐TRM). Plots of NRM unblocking versus Lab‐TRM blocking from API experiments often exhibit nonideal curvature, which can result in biased estimates. Previous work showed that curvature can increase with age; however, selection criteria designed to eliminate such behavior yielded accurate estimates for two‐year‐aged specimens (70.3 ± 3.8 μT;N = 96 specimens out of 120 experiments). API can also be estimated in coercivity space. Here, we use the Tsunakawa‐Shaw (TS) method applied to 20 specimens aged in the laboratory field of 70.0 μT for 4 years, after acquisition of zero‐age (fresh) Lab‐TRM in the same field. Selection criteria for the TS experiment also yielded accurate results (68.5 ± 4.5 μT;N = 17 specimens). In thermal API experiments, curvature is related to internal structure with more single domain‐like behavior having the least curvature. Here we show that the fraction of anhysteretic remanent magnetization demagnetized by low‐temperature treatment was larger for samples with larger thermal curvatures suggesting a magnetocrystalline anisotropy source. We also tested experimental remedies that have been proposed to improve the accuracy of paleointensity estimates. In particular, we test the efficacy of the multi‐specimen approach and a strategy pretreating specimens with low field alternating field demagnetization prior to the paleointensity experiment. Neither yielded accurate results.

     
    more » « less
  3. null (Ed.)
  4. Abstract

    We examine the behavior of natural basaltic and trachytic samples during paleointensity experiments on both the original and laboratory‐acquired thermal remanences and characterize the samples using proxies for domain state including curvature (k) and the bulk domain stability parameters of Paterson (2011,https://doi.org/10.1029/2011JB008369) and Paterson et al. (2017,https://doi.org/10.1073/pnas.1714047114), respectively. A curvature value of 0.164 (suggested by Paterson, 2011,https://doi.org/10.1029/2011JB008369) as a critical threshold that separates single‐domain‐like remanences from multidomain‐like remanances on the original paleointensity data was used to separate samples into “straight” (single‐domain‐like) and “curved” (multidomain‐like) groups. Specimens from the two sample sets were given a “fresh” thermal remanent magnetization in a 70 μT field and subjected to an infield‐zerofield, zerofield‐infield (IZZI)‐type (Yu et al., 2004,https://doi.org/10.1029/2003GC000630) paleointensity experiment. The straight sample set recovered the laboratory field with high precision while the curved set had much more scattered results (70.5 ± 1.5 and 71.9 ± 5.2 μT, respectively). The average intensity of both sets for straight and curved was quite close to the laboratory field of 70 μT, however, suggesting that if experiments contain a sufficient number of specimens, there does not seem to be a large bias in the field estimate. We found that the dependence of the laboratory thermal remanent magnetization on cooling rate was significant in most samples and did not depend on domain states inferred from proxies based on hysteresis measurements and should be estimated for all samples whose cooling rates differ from that used in the laboratory.

     
    more » « less
  5. Abstract

    The theory for recording of thermally blocked remanences predicts a quasilinear relationship between low fields like the Earth's in which rocks cool and acquire a magnetization. This serves as the foundation for estimating ancient magnetic field strengths. Addressing long‐standing questions concerning Earth's magnetic field requires a global paleointensity data set, but recovering the ancient field strength is complicated because the theory only pertains to uniformly magnetized particles. A key requirement of a paleointensity experiment is that a magnetization blocked at a given temperature should be unblocked by zero‐field reheating to the same temperature. However, failure of this requirement occurs frequently and the causes and consequences of failure are understood incompletely. Recent experiments demonstrate that the remanence in many samples typical of those used in paleointensity experiments is unstable, exhibiting an “aging” effect in which the (un)blocking temperature spectra can change over only a few years resulting in nonideal experimental behavior. While a fresh remanence may conform to the requirement of equality of blocking and unblocking temperatures, aged remanences may not. Blocking temperature spectra can be unstable (fragile), which precludes reproduction of the conditions under which the original magnetization was acquired. This limits our ability to acquire accurate and precise ancient magnetic field strength estimates because differences between known and estimated fields can be significant for individual specimens, with a low field bias. Fragility of unblocking temperature spectra may be related to grain sizes with lower energy barriers and may be detected by features observed in first‐order reversal curves.

     
    more » « less